We have developed a novel class of specifically engineered, dimerized cyclodextrin (CD) nanostructures for the encapsulation of toxic biomolecules such as 7-ketocholesterol (7KC). 7KC accumulates over time and causes dysfunction in many cell types, linking it to several age-related diseases including atherosclerosis and age-related macular degeneration (AMD). Presently, treatments for these diseases are invasive, expensive, and show limited benefits. CDs are cyclic glucose oligomers utilized to capture small, hydrophobic molecules. Here, a combination of in silicoin vitro, and ex vivo methods is used to implement a synergistic rational drug design strategy for developing CDs to remove atherogenic 7KC from cells and tissues. Mechanisms by which CDs encapsulate sterols are discussed, and we conclude that covalently linked head-to-head dimers of βCDs have substantially improved affinity for 7KC compared to monomers. We find that inclusion complexes can be stabilized or destabilized in ways that allow the design of CD dimers with increased 7KC selectivity while maintaining an excellent safety profile. These CD dimers are being developed as therapeutics to treat atherosclerosis and other debilitating diseases of aging.

Read complete article


Share Button

This website uses proprietary and third-party cookies. By continuing to navigate this website, you are accepting the use that we make of them. If you wish, you may change your settings on your browser.